Electroporation of the Testis

نویسندگان

  • Kentaro Yomogida
  • K. Yomogida
چکیده

The mature mammalian testis is a marvelous organ that produces numerous sperm cells during its reproductive phase. This biologically significant process consists of three steps: stem cell self-renewal and differentiation, meiosis and genetic recombination, and haploid cell morphogenesis into sperm (Russell et al., 1990). The first step provides a good model for investigating the molecular mechanism of stem cell regulation. Currently, the mechanism underlying sperm cell production is a very exciting topic in regenerative medicine (Lensch et al. 2007; Okita et al., 2007). The spermatogonial stem cell system has several advantages, including the easy histological identification of stem cells (Russell et al., 1990), a clear relationship between stem cells and the supporting Sertoli cells, which provide a stem cell niche (Tadokoro et al., 2002; Yomogida et al., 2003), and a transplantation assay for stem cell activity (Oatley & Brinster, 2006). Although germline stem (GS) cells derived from the gonocytes in newborn testis constitute a suitable in vitro system for investigating the properties of spermatogonial stem cells (Kanatsu-Shinohara et al., 2003, 2004), studies using living mammalian testes continue to provide information regarding the roles of the stem cell niche. In vivo electroporation of the supporting cells in the testis will expand our ability to study it. The last two steps in sperm cell production are important for species preservation and evolution. In mammals, meiotic cells at all stages of division and haploid cells are found continuously only in the testis. Indeed, most of our knowledge of the molecular mechanisms underlying these two processes has been obtained using mutant and genetically engineered animals, such as transgenic or knockout mice, because there are currently no suitable in vitro systems (Lau & Chan, 2007). However, the use of such mice requires significant time, money, and labor. The in vivo electroporation of mammalian testes could reduce this burden because it would allow a gene of interest to be inserted into the cells, and their behavior could be followed directly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design, modelling and preliminary characterisation of microneedle-based electrodes for tissue electroporation in vivo

We analysed the use of microneedle-based electrodes to enhance electroporation of mouse testis with DNA vectors for production of transgenic mice. Different microneedle formats were developed and tested, and we ultimately used electrodes based on arrays of 500 μm tall microneedles. In a series of experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP) and elec...

متن کامل

Gene Suppression of Mouse Testis In Vivo Using Small Interfering RNA Derived from Plasmid Vectors

We evaluated whether inhibiting gene expression by small interfering RNA (siRNA) can be used for an in vivo model using a germ cell-specific gene (Tex101) as a model target in mouse testis. We generated plasmid-based expression vectors of siRNA targeting the Tex101 gene and transfected them into postnatal day 10 mouse testes by in vivo electroporation. After optimizing the electroporation condi...

متن کامل

In vivo microinjection and electroporation of mouse testis.

This video and article contribution gives a comprehensive description of microinjection and electroporation of mouse testis in vivo. This particular transfection technique for testicular mouse cells allows the study of unique processes in spermatogenesis. The following protocol focuses on transfection of testicular mouse cells with plasmid constructs. Specifically, we used the reporter vector p...

متن کامل

Optimal Electroporation Condition for Small Interfering RNA Transfection into MDA-MB-468 Cell Line

Background: Electroporation is a valuable tool for small interfering RNA (siRNA) delivery into cells because it efficiently transforms a wide variety of cell types. Since electroporation condition for each cell type must be determined experimentally, this study presents an optimal electroporation strategy to reproducibly and efficiently transfect MDA-MB 468 human breast cancer cell with siRNA. ...

متن کامل

The Endothelial Permeability Increased by Low Voltage and High Frequency Electroporation

Propose: Standard electroporation and electrochemotherapy caused the endothe- lial cell permeability and reduction in tumor blood flow. The effects of low voltage and high frequency electroporation on the endothelial cells permeability and viability were expected. Therefore, the propose of present study was to evaluate the effect of electroporation with bleomycin or alone on viability and perme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012